
 
Abstract ― Disulfide connectivity prediction from one chain of 

protein helps determine protein tertiary structure. The more 
accuracy of prediction it reaches the more precise three 
dimensional structures we can obtain through computational 
methods. Previous methods only use local sequence or secondary 
structure information or global sequence information or 
combination of the above descriptors to predict the disulfide 
bond pattern. Instead of using those descriptors, we take an 
alternative descriptor of global secondary structure to make 
prediction, and the highest performance among all pattern-wise 
methods is obtained. Cysteine separation profiles on protein 
secondary structure have been used to predict the disulfide 
connectivity of proteins. The cysteine separation profiles on 
secondary structure(CSPSS) represent a vector encoded from the 
sepeartions between any two consecutive cysteine-corresponding 
positions in a predicted protein secondary structure sequence. 
Through comparisons of their CSPSS, the disulfide connectivity 
of a test protein is inferred from a template set. In 4-fold of SP39, 
any two proteins from different groups share less than 30% 
sequence identity. The result shows a prediction accuracy (54%), 
which proves again a disulfide bond pattern is highly related to 
protein secondary structure. 
 

Index Terms―Cysteine separation profiles, disulfide 
connectivity, nearest neighbour, secondary structure.  
 

I. INTRODUCTION 
Disulfide bonds are covalent bonds between two non-

adjacent cysteine residues in proteins. They determine the 
major folding of proteins [1]. The more correct prediction on 
disulfide bonds will lead the more accurate prediction on 
protein structure. Furthermore, the knowledge of disulfide 
bonds is very helpful for revealing structure/function 
relationship. Therefore, a higher performance on the 
prediction of disulfide connectivity will bring more benefits 
on the comprehensive study of the proteins with disulfide 
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bonds. 
Tsai et al. [6] have categorized all methods into two groups: 

(1) pattern-wise [6, 7] or (2) pair-wise [2-5].  The prediction 
accuracies of above methods are around 50% and only the 
newest method using SVM(Tsai et al., 2005) improve the 
results to 63%, which shows that this task remains challenging 
From another angle, the descriptor for predicting performance 
is a determinant factor.  

Fariselli and Casadio [3] calculated the bond probability of 
two cysteines from local contact potential profile. Zhao et al 
[7] used global sequence separations as the representation of  a 
protein. Tsai et al [6] also used global sequence separations as 
one of their descriptors for predicting the bond probabilities of 
possible pairs of cysteines.  Secondary structure has been 
employed as the descriptor for input coding by Baldi et al. [2] 
and Ferre and Clote [5]. Instead of using a local window of 
secondary structures, we extended the window size as the 
separations of two consecutive cysteines in one protein chain, 
thus we obtained a global descriptor of secondary structure, 
cysteine separation profile of secondary structure (CSPSS) 
similar to the CSP method [6].  

Our method derived from the CSP method [6] but created a 
new descriptor, cysteines separation profiles on secondary 
structure (CSPSS). It has been demonstrated that proteins with 
similar fold possibly share similar secondary structure and 
similar disulfide bond also share similar fold. Therefore, a 
pattern-wise method with the same schema of the CSP method 
but using CSPSS was developed. The method encodes the 
separations among consecutive cysteins of proteins on 
secondary structure sequence as vectors of four variables 
including the segment length, the number of coils, the number 
of sheets, and the number of helixes. Each vector can be 
viewed as a point in a four-dimensional space and thus each 
CSPSS can be viewed as a series of points in this space. The 
prediction is based on the comparisons of CSPSSs from 
testing and template dataset. The two proteins with the 
smallest divergence after the comparisons presumably has the 
same disulfide connectivity pattern.  We applied the method 
on SWISS-PROT 39 (SP39), and 2% improvements on 
prediction accuracy were obtained than the CSP method, and 
also found that our correctly predicted patterns included ones 
from CSP. The results reveal that CSPSS is a better descriptor 
than CSP for predicting disulfide connectivity. 
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II. METHODOLOGY 

A. Basic assumption 
Similar protein secondary structure patterns possibly imply 

similar protein tertiary structure patterns and lead to similar 
disulfide connectivity pattern because a disulfide bonding 
pattern is one aspect of protein tertiary structure. For example, 
the structures of two proteins (PDB id 1TAP and PDB id 

1BF0) exhibit the same disulfide connectivity pattern (1-6, 2-
3, 4-5) (the number is the index which indicates the 
occurrence order of cysteines in one protein chain) but share 
only 18.2% sequence identity. 

CSPSS  
CSPSS contains cysteine separation information about  

protein secondary structure. Protein x with n disulfide bonds 
and 2n cysteine residues has a cysteine separation profile 
(CSPSSx) defined as 
   

             (1) 

where Si is the vector of secondary structure sequence 
between the ith cysteine and the (i+1)th cysteine. Si can be 
represented as a segment of secondary structure sequence 
annotated by PSIPRED server 
(http://bioinf.cs.ucl.ac.uk/psipred/psiform.html). Therefore, 
every vector Si is a character string each position of which is 
one of three possible symbols(C, H, E) representing secondary 
structure. To make it numeric, we extract some digital 
information from each vector. Therefore, Si is transformed as  
 

                           (2) 

A. where li is the length of the vector, Ci is the number of C, 
Hi is the number of H and Ei is the number of E. 
For example, Si can be represented as a segment of 

secondary structure (ss) sequence annotated by PSIPRED 
server, i.e., a protein chain(AMCI_APIME) with 56 amino 
acids (aa) and 10 cysteines with the pattern (1-7, 2-5, 3-6, 4-
10, 8-9), 

aa: 
EECGPNEVFNTCGSACAPTCAQPKTRICTMQCRIGCQC
QEGFLRNGEGACVLPENC 

ss: 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCEECCCCCCCCCCCC 
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S9: [CCCCCCC]. 
After the encoding the segments of secondary structure 

according to the equation (2), S1, S8, S9 are numberic values as 
following:  
S1: [CCCCCCCCCC] → [10, 10, 0, 0] 

S8: [CCCCCCCEECCCCCC] → [15, 13, 2, 0] 

S9: [CCCCCCC] → [7, 7, 0, 0] 

The divergence, D, between two CSPSS is defined as 
follows  
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where X
iS  and  Y

iS  are the ith separations for CSPSS of two 
different proteins X and Y.  

The CSPSS of a test protein was then compared with all 
CSPSS of template proteins. The disulfide connectivity pattern 
of the test protein can be predicted as that of the template 

divergence value D. If more than one minimum value meets 
for one test protein, one of the template patterns will be 
chosen. In fact, this very rare situation did not occur in the 
experiments. 

III. MEASUREMENT 
The prediction accuracy of our method was also evaluated 

with Qp, which is the fraction of proteins with correct 
disulfide connectivity pattern prediction and is defined as:  

               
p

p
p T

C
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where Cp is the number of proteins with all the disulfide 
connectivity correctly predicted; Tp is the total number of test 
proteins.  

IV. RESULTS 

A. Dataset 
 In order to compare our method to the methods published 

in 2005, the dataset from SWISS-PROT named SP39 was 
adopted for method validation. To avoid the influence of 
sequence homology, the dataset was divided into four groups 
to guarantee that each two proteins from different groups have 
a sequence identity less than 30%.   

The numbers of sequences according to the bridges are 
displayed in Table 1. 

 
B. Cross-validation of SP39 
In order to compare with other methods for disulfide 

connectivity prediction, same criteria were applied on 
selecting our dataset.  Also the same fourfold cross-validation 

 
 

TABLE 1. NUMBER OF CHAINS ACCORDING TO THE THE NUMBER OF 
DISULFIDE BRIDGES (B)  

 
Dataset B=2 B=3 B=4 B=5 B=2...5 

SP39 156 146 99 45 446 
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has been applied on our dataset. Even the selection of four 
subsets is same as the method from Baldi et al. [2]. The SP39 
were divided into four subsets each of which has four 
balanced groups according to the bridges. It is worth pointing 
out that any test protein pattern can only be predicted from 
template proteins with same bridges from our method, which 
can be inferred from the methodology section. 

 

Table 2 lists the accuracies of four-fold cross-validation 
performed with the dataset SP39 for our method along with 
some results reported previously. Here we only list the results 
published in 2005 because the results before 2005 show the 
accuracy is up to 46%.  Baldi et al. used 2-Dimensional 
Recursive Neural Network (2D-RNN, [2]) to predict 
disulphide connectivity in proteins starting from their primary 
sequence and its homologues. The outputs of 2D-RNN are the 
pair-wise probabilities of the existence of a bridge between 
any pair of cysteines.  Finally, the weighted matching 
algorithm is applied on the graph with all edges/possibilities 
between any two vertices/cysteins. A diresidue Neural 
Network (DiANNA) [5] is trained to recognize pairs of 
bonded half-cystines given input of half-cystines symmetric 
flanking regions. The network is trained using disulfide bonds 
information derived from high-quality protein structures. the 
data are encoded with respect to cysteine pairs. Zhao et al. [8] 
simply adopted the descriptor of cysteine separation profile 
and used the nearest neighboring method. For the SVM 
model[6], the features encoded are the information extracted 
from profile and distances between oxidized cysteines (DOC). 
After the data are encoded, the SVM model is used to predict 
bonding probabilities for each cysteine pair. Finally, the 
problem is transformed into a maximum weight matching 
problem and solved to find the final bonding pattern for a 

protein.   
 Using CSPSS, the nearest neighboring method obtained a 

Qp of 54%, which is better than those obtained in previous 
methods except the SVM model. The reason for the 
improvement is the consideration of global secondary 
structure pattern. We also found that our results for correct 
predictions contain ones from the CSP method, which 
validated that our descriptor includes the information of the 
CSP descriptor.  

V. DISCUSSION AND CONCLUSION 
There are two major categories for the descriptors of 

disulfide connectivity prediction:  
(1) The global descriptors [6] such as sequence length, the 

positions of all cysteines and (2) local descriptors [2, 5, 7, 8] 
such as secondary structure and residue contact potential.  

We designed a new descriptor CSPSS which should be 
classified into the global descriptor, gave an example of how 
to use this descriptor with a pattern-wise method mentioned 
before and obtained a second-to-top performance. The SVM 
model [6] for predicting disulfide connectivity benefits from 
the combination of the global descriptor (DOC) and local 
descriptor (sequence profile) and is the state-of-art method. 
Therefore we will work on the combination of CSPSS with 
local descriptors using different methods such as the pair-wise 
method SVM to improve the results. 
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TABLE 2. COMPARISON AMONG DIFFERENT DISULFIDE CONNECTIVITY 
PREDICTION ALGORITHMS  

 
  B=2 B=3 B=4 B=5 B=2…5 

Methods Qp(%) Qp(%) Qp(%) Qp(%) Qp(%) 

2D-RNN a 74 51 27 11 49 

DiANNAb 62 40 55 26 49 

CSPc 72 54 33 18 52 

CSPSS 72 58 37 18 54 

SVMd 79 53 55 71 63 

 

aReported by Baldi in 2005 [2] 

bReported by Ferre and Clote in 2005 [5] 
cReported by Zhao et al. in 2005 [8] 
dReported by Tsai et al. in 2005 [6] 
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